The Crystal Structure of Dicalcium Phosphate, CaHPO₄

By G. MacLennan and C. A. Beevers

Chemistry Department, University of Edinburgh, Scotland

(Received 8 February 1955)

Anhydrous dicalcium phosphate has been found to be triclinic with space group $P\overline{1}$, the cell dimensions being

 $a = 6.90 \pm 0.01, \ b = 6.65 \pm 0.01, \ c = 7.00 \pm 0.01 \text{ Å};$ $\alpha = 96^{\circ} 21', \ \beta = 103^{\circ} 54', \ \gamma = 88^{\circ} 44'.$

The atomic coordinates have been found by analysis of the three-dimensional Patterson function, and the structure has been refined to a residual error factor R = 0.20. The structure contains independent PO₄ groups, one kind of calcium atom having a coordination of seven and the other of eight oxygens. Visual estimates of intensities were employed and the errors in these are considered to be too large to enable the positions of the hydrogen atoms to be found.

Introduction

The crystal structure of anhydrous dicalcium phosphate, CaHPO₄, (calcium hydrogen phosphate, or monetite) was investigated as part of a programme of research into phosphate structures of interest both in fertilizer manufacture and in the complex subject of phosphate fixation in the soil. A description of the structure of dicalcium phosphate dihydrate, CaHPO₄. $2H_2O$, has already been given (Beevers & Raistrick, 1954). The work is being undertaken in collaboration with the Research Department of Scottish Agricultural Industries Ltd.

The substance CaHPO₄ is of particular interest as it is the form present in several mixed fertilizers, especially those in whose manufacture nitric acid and/or free ammonia are used. It is hoped that the work, of which this structure determination is a part, will help to make more intelligible the changes which occur during manufacture and in the soil, and especially to clarify the nature of the solids deposited from solution with Ca/P ratios in the range between 1.0 (dicalcium phosphate) and 1.66 (hydroxyapatite).

Experimental

According to Groth (1908) anhydrous dicalcium phosphate is triclinic pinacoidal. Exceptionally pure prismatic crystals of maximum size 0.5 mm. were kindly made available by the Research Department of the Tennessee Valley Authority. Oscillation and Weissenberg photographs about the principal axes were obtained, using Cu $K\alpha$ radiation and a 5 cm.-radius normal-beam Weissenberg camera. The unit-cell dimensions were obtained from high-order 0kl, h0l and hk0 reflexions. The results were

$$a = 6.90 \pm 0.01, \ b = 6.65 \pm 0.01, \ c = 7.00 \pm 0.01 \text{ Å};$$

$$\alpha = 96^{\circ} 21', \ \beta = 103^{\circ} 54', \ \gamma = 88^{\circ} 44'.$$

These agree with the values previously obtained by Lehr, Smith & Brown (1952).

The cell contains four molecules of CaHPO₄, giving a calculated specific gravity of 2.92, compared with observed values of 2.93 (de Schulten) and 2.89 (Bassett). The space-group is $P\overline{1}$, and we have confirmed the presence of the morphological centre of symmetry by the statistical test of Howells, Phillips & Rogers (1950).

The reflexion intensities were estimated by visual comparison, using multiple exposures, and were corrected for Lorentz and polarization factors. The small irregular crystals precluded any correction for the rather high absorption. An attempt was made to place the intensities for the three two-dimensional zones on an absolute scale by Wilson's method, but this proved unsatisfactory, probably because of the absorption effect. The latter also prevented any measurement of the temperature factor. The general intensities were therefore left on a relative scale.

Structure determination

In the space group $P\overline{1}$ the general positions are twofold, and, since there are two CaHPO₄ molecules in the unique volume of the cell, all the atoms can be in general positions. Since there are only four unique heavy atoms, giving rise to sixteen interatomic vectors, Patterson methods seemed promising. The three Patterson projections down the principal axes were computed, but the occurrence of many almost coincident vectors made their interpretation impossible.

A three-dimensional Patterson function over the unique half of the cell was therefore calculated, using an electrical analogue computer of the Hägg-Laurent type, built by Dr F. Stern. Intervals of 30ths of the cell edges were used, and the resulting function was drawn out in 16 sections parallel to the b-c plane. A list was drawn up of the principal vectors, and a

THE CRYSTAL STRUCTURE OF DICALCIUM PHOSPHATE, CaHPO4

Table 1. Values of F_o and F_c for the (hk0), (h0l), (0kl) and (hk3) planes of CaHPO₄

hkl F _o F _c	hkl F _o F _e	hkl F _o F _c								
010 0 Ī	230 0 1	500 29 30	810 14 20	207 4 8	406 19 15	707 28 17	062 38 38	055 34 43	213 64 65	333 13 7
020 32 25	240 39 41	510 21 20	820 3 7	208 0 1	407 16 15	801 28 13	072 10 12	065 20 17	313 0 1	4 33 0 7
030 51 51	250 27 20	520 37 38	830 10 15	201 54 64	408 5 2	801 20 17	082 7 2	015116	413 42 36	533 0 0
040 33 31	260 35 32	530 12 6	810 12 12	202 78 77	501 36 33	802 23 28	013 0 0	025 19 16	513 0 5	633 28 34
050 23 14	270 12 8	5270 8 9	820 16 18	203 0 2	502 35 30	803 33 37	023 30 31	035 0 6	613 32 27	733 0 8
060 10 7	280 15 12	550 28 27	830 7 3	204 38 37	503 7 6	804 16 19	033 44 37	04566	713 20 18	143 24 18
070 6 6	300 24 18	560 27 29	001 21 20	205 0 Ī	504 20 20	805 30 31	043 67 57	055 21 20	<u>113 24 31</u>	143 6 8
080 16 24	310 47 44	510 0 3	002 62 89	2076 8 9	505 0 6	011 10 10	053 33 29	035 21 13	213 27 35	243 35 19
100 0 2	320 21 23	520 8 9	003 53 63	207 0 3	501 0 7	021 14 14	063 5 5	075 23 21	313 29 18	343 0 3
110 0 3	330 16 14	530 6 8	004 20 20	208 0 3	502 18 22	031 15 8	073 29 34	016 46 52	413 21 20	4 30 4
120 64 83	340 12 12	540 25 27	005 9 10	301 46 47	503 40 30	041 40 32	013 40 41	026 0 2	513 0 5	543 6 7
130 42 40	350 25 15	550 0 9	006 0 ī	302 0 4	504 0 5	051 24 15	023 23 14	036 0 2	613 0 6	643 30 27
140 5 0	360 30 27	560 24 20	007 0 7	303 28 22	505 42 39	061 39 46	033 50 27	046 0 9	713 0 0	743 0 3
150 5 3	370 19 11	600 30 34	006 0 2	304.11.9	506 17 14	071 16 17	043 16 22	056 22 24	813 0 I	153 29 19
160 23 18	310 28 29	610 0 7	101 19 19	305 38 36	507 18 12	081 9 12	053 18 12	016 24 23	123 69 69	153 53 50
170 29 20	320 88 93	620 0 5	102 49 45	306 0 6	508 14 10	011 15 16	063 62 61	026 38 39	223 23 20	253 44 43
180 19 19	330 0 4	630 18 13	103 18 24	307 28 38	601 55 53	021 19 20	07300	036 37 37	323 74 66	353 37 21
110 0 6	340 47 54	640 32 36	104 21 25	301 22 22	602 14 16	031 50 60	083 12 14	0.26 0 8	423 0 4	<u>4</u> 53 0 6
120 69 93	350 11 10	650 11 11	105 20 13	302 17 18	603 19 17	041 39 45	014 34 38	056 27 27	523 20 14	553 0 8
130 24 23	360 5 5	660 12 13	106 5 5	303 0 3	604 16 11	051 8 7	024 8 11	066 24 22	623 10 16	653 0 3
170 7 6	3700 Ī	610 0 0	107 4 5	304 42 39	601 53 70	061 60 60	034 0 2	017 31 33	123 70 81	163 35 25
150 25 15	400 5 4	620 8 8	108 0 3	305 12 15	602 9 6	07168	044 0 5	027 14 12	223 36 42	263 0 0
160 6 2	410 17 16	630 23 26	101 9 5	306 40 38	603 61 75	081.02	054 0 6	037 0 5	323 0 2	363 37 35
170 29 20	420 20 22	640 18 18	102 31 25	307 4 15	604 19 18	012 26 25	064 9 7	047 15 13	4 23 0 12	4 63 24 2 7
180 16 17	430 19 22	650 0 0	103 48 47	308 23 22	605 17 13	022 39 32	074 16 10	017 17 17	523 51 64	173 10 26
200 78 88	440 23 22	660 56 59	104 40 25	401 55 55	606 19 22	032 29 19	014 20 16	027 25 26	623 0 3	273 34 13
210 13 8	450 8 11	700 10 19	105 14 13	402 10 4	607 0 8	042 17 15	024 60 66	037 0 8	723 34 43	
220 16 17	460 7 13	710 18 27	105 9 12	403 34 32	701 4 7	052 21 15	034 37 36	047 22 16	ē23 0 10	
230 6 4	470 22 15	720 30 39	10700	404 18 11	702 28 22	062 0 7	044 34 25	057 8 13	133 42 43	
240 0 8	410 19 19	730 9 10	108 0 5	405 16 11	703 0 4	072 15 13	054 22 20	018 10 14	233 38 42	
250 41 31	420 0 6	740 0 3	201 62 72	406 0 2	701 914	082 18 27	064 34 39	028 8 10	333 30 40	
260 35 35	430 11 11	7 1 0 0 1	202 6 4	401 55 59	702 0 9	012 9 8	074 25 25	018 30 30	433 20 17	
270 10 11	440 28 29	720 18 25	203 58 61	402 55 43	703 8 12	022 47 61	015 50 47	028 5 8	533 15 12	
280 19 20	430 0 2	730 510	204 0 9	403 39 38	704 4 8	032 6 6	025 26 27	038 0 10	633 0 8	
210 21 21	460 47 48	740 16 15	205 18 13	404 44 44	705 20 21	042 12 17	035 0 1	078 30 26	ī33 35 35	
220 25 19	470 15 14	800 33 42	206 0 6	405 17 20	706 0 2	052 0 1	045 33 40	113 7 6	233 27 18	

preliminary attempt was made to recover the fundamental set of heavy atoms from them by trial and error. This failed, as in many previous instances, and the vector-convergence method of Beevers & Robertson (1950) was adopted. This involved using three or more heavy atoms to search for the relative positions of the remainder in the cell, and then noting the centre of symmetry, and hence the absolute positions by inspection. Heavy atoms were assumed to lie at the Patterson origin and at two other outstandingly high peaks, and the Patterson function was superposed over the entire cell with these positions in turn as origin. The coincidence of vectors at once revealed the other five heavy atoms and the centre of symmetry, showing that the original two vectors had been correctly chosen. Moreover, by observing the peak heights carefully, Ca and P atoms were unambiguously separated.

It yet remained to discover the sixteen O atoms. The number of recorded coincidences of medium height corresponding to possible oxygen positions was confusingly large, and a further superposition with a fourth heavy atom failed to simplify the choice. The fact that the P–O distance is approximately 1.6 Å was therefore used. Spheres of this radius were constructed round the four P atoms, and all coincident vectors within about 0.2 Å of the spheres were noted. Pairs of these which were related by the previouslyfound centre of symmetry were then picked out. Nine pairs were in fact found, of which one corresponded to an atom in a sterically impossible position near the centre, and the remaining eight gave convincing PO4 tetrahedra with no gross packing difficulties. All the vectors between the heavy atoms and the oxygens chosen were then calculated and compared with the

580

Fig. 1. Four unit cells of $CaHPO_4$, projected down the c axis.

original Patterson function to ensure not only that all the vectors were present, but that no significant peaks on the map remained unaccounted for. This was confirmed, and small alterations were then applied to the atomic positions to obtain the best possible overall fit.

Refinement

The atomic positions obtained were used to calculate structure factors for the (0kl) zone. This gave encouraging agreement, the factor $R = \Sigma ||F_o| - |F_c|| \div \Sigma |F_o|$ being 0.40. A Fourier projection, using the 77 F_o terms which could be signed, showed satisfactory details and only small shifts. When these were applied R fell to 0.35. Further refinement was carried out by the use of $(F_o - F_c)$ syntheses, F_o being first scaled to fit F_c over five ranges of sin θ , since the Wilson scaling curve was not felt to be reliable. Four stages of refinement reduced R to 0.203. It was then decided to refine the x parameters using the (hk0) zone. Structure factors calculated using the x parameters from the Patterson superposition and the already refined y parameters

gave R = 0.51. Five stages of refinement exactly as for the previous zone reduced this to R = 0.196. Finally the $(\hbar 0l)$ zone was refined and the structure factors calculated for the three zones with the mean parameters from the three refinements. The residuals were then:

$$R(hk0) = 0.193, R(h0l) = 0.216, R(0kl) = 0.193;$$

average $R = 0.201$.

These figures include reflexions of observed zero intensity, and no corrections have been applied for extinction nor for a temperature factor. As a final check of the validity of the structure, structure factors for the (hk3) planes were calculated. Satisfactory agreement was obtained with R = 0.285. Observed and calculated F values for the planes (hk0), (h0l), (0kl) and (hk3) are given in Table 1.

Fourier projections computed for the final structure showed the oxygen atoms badly distorted by the diffraction rings round the heavy atoms. This is to be expected when the Fourier series for atoms with no heat motion is abruptly terminated, and the effect could be reduced by the introduction of a suitable temperature factor.

The final atomic parameters, in 360ths of the cell edges, are:

	\boldsymbol{x}	\boldsymbol{y}	z
Ca ₁	106	157	98
Ca	63	302	240
P,	74	135	259
P,	107	339	75
0,	114	120	336
0,	123	177	222
0,	48	66	213
O₄	15	192	270
05	120	300	6
0 s	165	39	108
0,	39	27	57
0	105	285	126

The accuracy of the determination was estimated using the equations given by Cruickshank (1949). The standard deviation in electron density, $\sigma(\varrho)$, is $1 \cdot 1 \text{ e.} \text{Å}^{-2}$ on the (0kl) projection. The standard deviation in atomic coordinates in the *c* direction, $\sigma(z)$, is $0 \cdot 006$ Å for Ca, $0 \cdot 011$ Å for P and $0 \cdot 039$ Å for O. Hence the standard deviations in bond lengths are:

Ca-O = 0.039 Å,

P-O = 0.040 Å,

0-0 = 0.055 Å,

O-O = 0.078 Å (if related by a centre of symmetry).

Description of the structure

The structure of CaHPO₄ consists of discrete PO₄^{'''} tetrahedra and Ca⁺⁺ ions, the latter coordinated by a shell of oxygen atoms. Fig. 1 shows a projection of the structure down the *c* axis, four unit cells being shown. In the *a* direction Ca₁ is bonded to O₂ and O₄ attached to P₁, while Ca₂ is bonded to O₆ and O₇, attached to P₂. In the *b* direction Ca₁ is bonded to O₆ and O₇, and Ca₂ to O₂ and O₄, so that a double chain of Ca-PO₄-Ca extends along the *a* axis, thus:

Bonds from Ca_1 to O_8 and Ca_2 to O_3 link these chains transversely in the *b* direction, forming a distorted sheet of atoms roughly in the (001) plane. The centre of symmetry produces a similar sheet below the first in the *c* direction, further bonds from Ca_1 to O'_1 and O'_2 , and from Ca_2 to O'_3 , O'_5 and O'_8 linking the sheets. Ca_1 thus has seven and Ca_2 eight nearest oxygen neighbours in its coordination shell. This variation in the calcium coordination is not unexpected. The highly electropositive nature of the metallic ion results in an unusually great ionic character in its coordination, so that no definite allocation of shared electrons from the oxygens is possible. Ca–O coordinations of all values from 6 to 9 have been reported (see Wells, 1945) and different values in the same structure have been noted where the symmetry permits (Smith, 1953).

The bond lengths and angles obtained are given in Table 2.

The average P–O bond length is 1.54 Å, the average Ca–O bond length is 2.46 Å, and the average distance O–O within the PO₄ group is 2.51 Å.

The two hydrogen atoms probably lie between oxygens of neighbouring PO_4 groups. It is not feasible to identify their positions by a reduction in the O-O distance between non-bonded atoms, since in this case, with a standard deviation of 0.055 Å in the bond length, only differences in O-O bonds greater than 0.18 are significant. This uncertainty, caused primarily by the swamping effect of the heavy atoms, is sufficient

$\begin{array}{l} P_1 - O_1 = 1 \cdot 53 \text{ \AA} \\ P_1 - O_2 = 1 \cdot 58 \\ P_1 - O_3 = 1 \cdot 49 \\ P_1 - O_4 = 1 \cdot 56 \\ P_2 - O_5 = 1 \cdot 52 \\ P_2 - O_6 = 1 \cdot 56 \\ P_2 - O_7 = 1 \cdot 55 \\ P_2 - O_8 = 1 \cdot 54 \end{array}$	$\begin{array}{l} {\rm Ca_1-O_1'=2\cdot44}\\ {\rm Ca_1-O_2=2\cdot34}\\ {\rm Ca_1-O_2'=2\cdot48}\\ {\rm Ca_1-O_4=2\cdot29}\\ {\rm Ca_1-O_6=2\cdot44}\\ {\rm Ca_1-O_7=2\cdot69}\\ {\rm Ca_1-O_8=2\cdot37} \end{array}$	$ \begin{array}{ccc} {\rm \AA} & & {\rm Ca_2-O_2}=2.58\ {\rm \AA} \\ & {\rm Ca_2-O_3}=2.40\\ & {\rm Ca_2-O_3}=2.43\\ & {\rm Ca_2-O_4}=2.43\\ & {\rm Ca_2-O_4}=2.44\\ & {\rm Ca_2-O_5}=2.44\\ & {\rm Ca_2-O_6}=2.51\\ & {\rm Ca_2-O_7}=2.58\\ & {\rm Ca_2-O_8}=2.51 \end{array} $
$\begin{array}{l} O_1 - P_1 - O_2 = \\ O_1 - P_1 - O_3 = \\ O_1 - P_1 - O_4 = \\ O_2 - P_1 - O_3 = \\ O_2 - P_1 - O_4 = \\ O_2 - P_1 - O_4 = \\ O_2 - P_1 - O_4 = \end{array}$	116-5° 113-5 105-5 108-5 103-5 116-0	$\begin{array}{l} O_5 - P_2 - O_6 = 111 \cdot 0^{\circ} \\ O_5 - P_2 - O_7 = 109 \cdot 0 \\ O_5 - P_2 - O_8 = 107 \cdot 0 \\ O_6 - P_2 - O_7 = 100 \cdot 0 \\ O_6 - P_2 - O_8 = 108 \cdot 5 \\ O_7 - P_2 - O_8 = 112 \cdot 0 \end{array}$

to obscure any evidence of hydrogen bonding. In fact, the shortest measured O-O contact is 2.48 Å between O₇ and its symmetry-related atom, where the standard deviation is higher $[\sigma(d_{12}) = 2\sigma(x_1)]$ and where a hydrogen bond is not possible by space-group considerations. The next shortest contacts observed are

$$O_1 - O_5 = 2.60, \ O_6 - O_8' = 2.62, \ O_4 - O_7 = 2.71 \text{ Å}$$

The structure of CaHPO₄ is thus a three-dimensional network of PO₄^{'''} tetrahedra with Ca⁺⁺ ions in the interstices, holding the anions together by highly ionic bonds with the oxygens. There seems to be no close resemblance to the structures of chemically related compounds, though CaSO₄, which is orthorhombic, has very similar cell dimensions (Dickson & Binks, 1926). In particular, the structure of apatite (Beevers & MacIntyre, 1946) is quite different, so that profound alterations in the crystal lattice must be necessary as the Ca/P ratio is reduced from 1.66, and a continuous series of solid solutions between hydroxyapatite and anhydrous dicalcium phosphate seems unlikely. Our thanks are due to Dr B. Raistrick, of Scottish Agricultural Industries Ltd, for suggesting this problem, and to the Agricultural Research Council for a grant to purchase apparatus. One of us (G. M.) is indebted to the Department of Scientific and Industrial Research for a maintenance allowance during the period of this research.

References

- BEEVERS, C. A. & MACINTYRE, D. (1946). Miner. Mag. 27, 254.
- BEEVERS, C. A. & RAISTRICK, B. (1954). Nature, Lond. 173, 542.

- BEEVERS, C. A. & ROBERTSON, J. H. (1950). Acta Cryst. 3, 164.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- DICKSON, E. C. S. & BINKS, W. (1926). Phil. Mag. (7), 2, 114.
- GROTH, P. (1908). Chemische Krystallographie, vol. 2, p. 820. Leipzig: Engelmann.
- HOWELLS, E. R., PHILLIPS, D. C. & ROGERS, D. (1950). Acta Crust. 3, 210.
- LEHR, J. R., SMITH, J. P. & BROWN, W. E. (1952). S. E. Regional Meeting, American Chemical Society, October 1952.
- SMITH, J. V. (1953). Acta Cryst. 6, 9.
- WELLS, A. F. (1945). Structural Inorganic Chemistry. Oxford: Clarendon Press.

Acta Cryst. (1955). 8, 583

The Crystal Structure of Hydroxylamine

BY EDWARD A. MEYERS AND WILLIAM N. LIPSCOMB

School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A.

(Received 25 April 1955)

Four molecules of hydroxylamine are in an orthorhombic unit cell of symmetry $P2_12_12_1$ and dimensions a = 7.29, b = 4.39, c = 4.88 Å. The coordinates $x_0 = 0.060$, $y_0 = -0.062$, $z_0 = -0.023$, $x_N = 0.121$, $y_N = 0.244$ and $z_N = 0.063$ lead to the N-O bond distance of $1.47_{6\pm}0.03$ Å, and to the closest intermolecular contacts of N \cdots O = 2.74, 3.07, 3.11 and 3.18 Å. Hydrogen bonds are presumed to lie in the 2.74 and 3.07 Å contacts, thus leaving the third hydrogen atom of the molecule uninvolved, and indicating a *trans* configuration for the molecule. No residual entropy is indicated, and no transition occurs when the solid is cooled to -185° C.

Introduction

Two spectroscopic investigations of hydroxylamine, one of the solid and gas by Giguère & Liu (1952), and one of the solid at low temperature by Nightingale & Wagner (1954), have recently been made. These studies differ somewhat in the observations, and the assignments of the bands are different. In particular, Nightingale & Wagner assigned the broad, intense band at 2867 cm.⁻¹ to a strong hydrogen bond.

In the hope that we could provide some information relating to these spectroscopic studies, and in the expectation that the structure might be closely related to those shown by hydrazine (Collin & Lipscomb, 1950, 1951), hydrogen peroxide (Abrahams, Collin & Lipscomb, 1951), methanol (Tauer & Lipscomb, 1952), and methylamine (Atoji & Lipscomb, 1953), we have carried out a study of the crystal structure as described below. Low-temperature techniques were employed partly because of the low melting point of 33° C., but chiefly because of the tendency towards rapid decomposition near room temperature.

Experimental

Hydroxylamine, prepared by the method of Hurd (1939), was transferred to a vacuum line and was

partially further purified by pumping out volatile impurities for periods up to 30 min. The usual techniques of sublimation into capillaries produced impure samples, so that a modified technique was used. A section of glass tubing between the sample and vacuum pumps was drawn down to capillary diameter. With the pumps maintained in operation, a short length of this constricted region was cooled to near liquidnitrogen temperature, allowed to warm for a short time, cooled again, with the low-temperature stream of nitrogen, and then sealed on both sides of the small slug of solid hydroxylamine. Thus prepared, the samples were stored in dry ice.

X-ray diffraction data were collected on the precession camera from a single crystal, grown with the use of a warm air stream, and maintained at -60° C. during photography. Mo $K\alpha$ radiation was used, and precession angles of 21° for the $\{h0l\}$ zone and 30° for the $\{hk0\}$, $\{0kl\}$, $\{hkh\}$ and $\{2h,k,h\}$ zones were employed. No X-ray diffraction evidence of a phase transition was observable at temperatures down to -185° C.

Intensities were estimated visually with the use of a standard scale of timed exposures of a reflection from a crystal of NaCl of comparable size. The usual Lorentz and polarization corrections (Waser, 1951)