The Crystal Structure of Dicalcium Phosphate, CaHPO_{4}

By G. MacLennan and C. A. Beevers
Chemistry Department, University of Edinburgh, Scotland

(Received 8 February 1955)
Anhydrous dicalcium phosphate has been found to be triclinic with space group $P \overline{1}$, the cell dimensions being

$$
\begin{gathered}
a=6 \cdot 90 \pm 0 \cdot 01, \quad b=6 \cdot 65 \pm 0 \cdot 01, \quad c=7 \cdot 00 \pm 0 \cdot 01 \AA ; \\
\alpha=96^{\circ} 21^{\prime}, \quad \beta=103^{\circ} 54^{\prime}, \quad \gamma=88^{\circ} 44^{\prime} .
\end{gathered}
$$

Abstract

The atomic coordinates have been found by analysis of the three-dimensional Patterson function, and the structure has been refined to a residual error factor $R=0 \cdot 20$. The structure contains independent PO_{4} groups, one kind of calcium atom having a coordination of seven and the other of eight oxygens. Visual estimates of intensities were employed and the errors in these are considered to be too large to enable the positions of the hydrogen atoms to be found.

Introduction

The crystal structure of anhydrous dicalcium phosphate, CaHPO_{4}, (calcium hydrogen phosphate, or monetite) was investigated as part of a programme of research into phosphate structures of interest both in fertilizer manufacture and in the complex subject of phosphate fixation in the soil. A description of the structure of dicalcium phosphate dihydrate, $\mathrm{CaHPO} \mathrm{H}_{4}$. $2 \mathrm{H}_{2} \mathrm{O}$, has already been given (Beevers \& Raistrick, 1954). The work is being undertaken in collaboration with the Research Department of Scottish Agricultural Industries Ltd.

The substance CaHPO_{4} is of particular interest as it is the form present in several mixed fertilizers, especially those in whose manufacture nitric acid and/or free ammonia are used. It is hoped that the work, of which this structure determination is a part, will help to make more intelligible the changes which occur during manufacture and in the soil, and especially to clarify the nature of the solids deposited from solution with Ca / P ratios in the range between 1.0 (dicalcium phosphate) and $1 \cdot 66$ (hydroxyapatite).

Experimental

According to Groth (1908) anhydrous dicalcium phosphate is triclinic pinacoidal. Exceptionally pure prismatic crystals of maximum size 0.5 mm . were kindly made available by the Research Department of the Tennessee Valley Authority. Oscillation and Weissenberg photographs about the principal axes were obtained, using $\mathrm{Cu} K \alpha$ radiation and a 5 cm .-radius normal-beam Weissenberg camera. The unit-cell dimensions were obtained from high-order $0 k l, h 0 l$ and $h k 0$ reflexions. The results were

$$
\begin{gathered}
a=6 \cdot 90 \pm 0 \cdot 01, b=6 \cdot 65 \pm 0 \cdot 01, c=7 \cdot 00 \pm 0 \cdot 01 \AA \\
\alpha=96^{\circ} 21^{\prime}, \beta=103^{\circ} 54^{\prime}, \gamma=88^{\circ} 44^{\prime}
\end{gathered}
$$

These agree with the values previously obtained by Lehr, Smith \& Brown (1952).

The cell contains four molecules of CaHPO_{4}, giving a calculated specific gravity of $2 \cdot 92$, compared with observed values of 2.93 (de Schulten) and 2.89 (Bassett). The space-group is $P \overline{1}$, and we have confirmed the presence of the morphological centre of symmetry by the statistical test of Howells, Phillips \& Rogers (1950).

The reflexion intensities were estimated by visual comparison, using multiple exposures, and were corrected for Lorentz and polarization factors. The small irregular crystals precluded any correction for the rather high absorption. An attempt was made to place the intensities for the three two-dimensional zones on an absolute scale by Wilson's method, but this proved unsatisfactory, probably because of the absorption effect. The latter also prevented any measurement of the temperature factor. The general intensities were therefore left on a relative scale.

Structure determination

In the space group $P \overline{1}$ the general positions are twofold, and, since there are two CaHPO_{4} molecules in the unique volume of the cell, all the atoms can be in general positions. Since there are only four unique heavy atoms, giving rise to sixteen interatomic vectors, Patterson methods seemed promising. The three Patterson projections down the principal axes were computed, but the occurrence of many almost coincident vectors made their interpretation impossible.

A three-dimensional Patterson function over the unique half of the cell was therefore calculated, using an electrical analogue computer of the Hägg-Laurent type, built by Dr F. Stern. Intervals of 30ths of the cell edges were used, and the resulting function was drawn out in 16 sections parallel to the $b-c$ plane. A list was drawn up of the principal vectors, and a

Table 1．Values of F_{o} and F_{c} for the（ $h k 0$ ），（ $h 0 l$ ），（ $0 k l$ ）and（ $h k 3$ ）planes of CaHPO_{4}

2hal $F_{0} F_{c}$	hat $F_{0} F_{0}$	hkl $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{0}$	hal $\mathrm{F}_{\mathrm{o}} \mathrm{F}_{\mathrm{c}}$	hall $\mathrm{F}_{0} \mathrm{~F}_{\mathrm{c}}$	halc $\mathrm{F}_{0} \mathrm{~F}_{\mathrm{c}}$	hall $\mathrm{F}_{0} \mathrm{~F}_{\mathrm{c}}$	$h_{\text {hal }} F_{0} F_{c}$	${ }^{\text {hkl }} \mathrm{F}_{\mathrm{O}} \mathrm{F}_{\mathrm{c}}$	hal $\mathrm{F}_{0} \mathrm{~F}_{\mathrm{c}}$	hki $\mathrm{F}_{0} \mathrm{~F}_{\mathrm{c}}$
0100 İ	$2 \overline{3} 001$	$50029 \overline{30}$	810 щ 20	20748	$40 \overline{6} 19 \overline{15}$	$70728 \overline{17}$	0623838	$05534 \overline{43}$	2136465	$\overline{33313} 7$
0203225	240394	$51021 \overline{20}$	82037	20801	$40 \overline{7615}$	$80128 \overline{13}$	072 10 12	0652017	31301	43307
$03051 \overline{51}$	$25027 \overline{20}$	$52037 \overline{38}$	8301015	$20 \overline{5} 54 \overline{64}$	$40 \overline{8} \quad 2$	$80 \overline{20} 17$	－8̄2 7 －	0i5 126	$41342 \overline{36}$	53300
$04033 \overline{31}$	$2 \overline{6} 03532$	$53012 \overline{6}$	$81012 \overline{12}$	2027877	$50136 \overline{33}$	$80 \overline{2} 2328$	01300	$0 \overline{2519} \overline{16}$	51305	$\overline{6} 3328$ 34
050234	$27012 \overline{8}$	54087	$8 \overline{0} 016 \overline{18}$	20302	5023530	$80 \overline{3} 33 \overline{37}$	0233031	$0 \overline{35} 06$	6133227	73308
060107	2801512	5502827	83075	2043837	50376	$80 \overline{4} 16 \overline{19}$	$03344 \overline{37}$	04566	7132018	$24324 \overline{18}$
07067	3002418	5602729	$00121 \overline{20}$	$20 \overline{5} 0$ I	$50420 \overline{20}$	8053031	0436757	0552120	［13 2431	14368
$08016 \overline{4}$	$31047 \overline{44}$	$510 \quad 0$	0026289	20889	50506	0111010	0533329	0651216	2132735	2433519
10002	$32021 \overline{23}$	52008	0035363	2070	50 I	021145	06355	O75 23 İ	3132918	34303
$110 \quad 0 \quad 3$	3301614	53068	0042020	$20 \overline{8} \quad 03$	$502 \overline{18} \overline{22}$	031258	0732934	0164652	4232120	4，3 0 ¢
1206483	3401212	$5 \overline{0} 25 \overline{27}$	$0059 \overline{10}$	3014647	$50 \overline{3} 4030$	0414032	013 40 प1	02602	51305	54367
$13042 \overline{40}$	$35025 \overline{15}$	550	0060 I	3020 7	50405	$05124 \overline{15}$	02323 工	03602	$\overline{6} 3006$	$64330 \overline{27}$
14050	$36030 \overline{27}$	$5 \overline{60} 24.20$	00707	$30328 \overline{22}$	$50542 \overline{39}$	0613946	$03350 \overline{47}$	0460	7130	7430
$150 \quad 5$	37019 II	6003034	$0080 \overline{2}$	304119	5061714	$07116 \overline{17}$	$0 \overline{431622}$	0562224	$\overline{813} 0$ I	$15329 \overline{19}$
1602318	$3 \overline{10} 28 \overline{29}$	$610 \quad 07$	$10119 \overline{19}$	3053836	5071812	081912	0531812	0162423	1236969	1535350
1702920	$3 \overline{0} 8893$	$620 \quad 0 \quad 5$	$10249 \overline{45}$	$3060 \overline{6}$	$50 \overline{81} 14 \overline{10}$	0711516	0636262	027 38 39	2232320	$25344 \overline{43}$
1801919	$330 \quad 0 \quad 4$	$63018 \overline{13}$	1031824	30728 38	6015553	व21 1920	ण73 00	$03637 \overline{37}$	$32374 \overline{66}$	35337
11006	$3 \overline{704754}$	$64032 \overline{36}$	1042125	30 I 2222	$60214 \overline{16}$	0315060	－83 1214	$0 \overline{4} 60 \quad \overline{8}$	42304	$\overline{4} 5306$
$12 \overline{0} 69 \overline{93}$	$35011 \overline{10}$	6501111	$10520 \overline{13}$	$302 \overline{2} 1718$	$60319 \overline{17}$	042 3945	0143438	$05627 \overline{27}$	5232014	$\overline{553} 00 \overline{8}$
$13 \overline{0} 2423$	36057	$66012 \overline{13}$	$1065 \overline{5}$	$30 \overline{3} \bigcirc \overline{3}$	6041611	0518	0248 II	0662422	$62310 \overline{16}$	$\overline{6} 5303$
14076	370 ○ I	61000	10745	3044239	6015370	$06160 \overline{60}$	$0340 \overrightarrow{2}$	0173133	12370 821	İ63 3525
1502515	40054	$6 \overline{0} 0 \quad 8$ ¢	10803	3051215	60296	¢1 68	04405	$02714 \overline{12}$	223 3642	2763 ○ ○
16062	4017 I 6	$6 \overline{30} 23 \overline{26}$	$10 \overline{1} 9$	3064038	6036175	081 0	05403	03705	$\overline{3} 230 \overline{2}$	$\overline{363} 37 \overline{35}$
$1 \overline{70} 29 \overline{20}$	4202022	$6 \overline{40} 1818$	$10 \overline{21} 25$	$30 \overline{7} 4 \overline{15}$	$60 \overline{4} 19 \overline{18}$	0122625	06497	$04715 \overline{13}$	$\overline{423} 0 \overline{12}$	$\overline{46324} \overline{77}$
$1 \overline{80} 16 \overline{17}$	4301922	65000	$10 \overline{3} 48 \overline{47}$	$30 \overline{8} 2322$	$60517 \overline{13}$	0223932	07416 10	$01717 \overline{17}$	5235164	173 10 26
20078 \％	4402322	$6 \overline{0} 5659$	$10 \overline{4} 40 \overline{25}$	$40155 \overline{55}$	6061922	0322919	$0 \overline{14} 20 \overline{16}$	$0 \overline{77} 2526$	$\overline{623} 0 \overline{3}$	273 $34 \overline{13}$
210138	450811	7001019	1051413	402104	$60 \overline{7} 0$	0421715	－0⿹勹厶 6066	$0 \overline{37} 00 \overline{8}$	$72334 \overline{43}$	
2201677	460713	7101827	$10 \overline{6} 912$	4033432	70147	$05221 \overline{15}$	0343736	$04722 \overline{16}$	$\overline{8} 23010$	
23064	$47022 \overline{15}$	7203039	10゙刀 0	4041811	70228	06207	0－44 $34 \overline{25}$	05785	$13342 \overline{43}$	
24008	4019 19	73097	$10 \overline{8} 05$	40516 IT	70304	0721513	0542220	01810 工	2333842	
2504131	$4 \overline{2} 006$	74005	2016272	$406 \quad 0 \quad \overline{2}$	7015	0821827	0643439	028810	3333040	
$26035 \overline{35}$	4301111	71001	20267	4015559	$70 \overline{2} 0 \overline{9}$	$0 \overline{10}_{2} 98$	Of7 $^{25} 25$	$0 \overline{18} 30 \overline{30}$	4332017	
2701011	$4 \overline{4} 028 \overline{29}$	72018 25	2035861	$40 \overline{2} 55 \overline{43}$	70385	02̄2 $47 \overline{61}$	0155047	－2̄8 58	$53315 \overline{12}$	
2801920	$4500 \overline{2}$	$7 \overline{3} 0 \quad 5 \overline{10}$	20409	$40 \overline{3} 39 \overline{38}$	70448	03263	0252627	$038 \quad 010$	6330 8	
$2 \overline{0} 021$	$46047 \overline{48}$	7401615	2051813	40444	7052021	－4， 21217	0350	0483026	1 333535	
$2 \overline{0} 2519$	$4 \overline{7} 01514$	$80033 \overline{42}$	20606	$40517 \overline{20}$	$70 \overline{6} \bigcirc \overline{2}$	05201	0453340	11376	2332718	

preliminary attempt was made to recover the fun－ damental set of heavy atoms from them by trial and error．This failed，as in many previous instances，and the vector－convergence method of Beevers \＆Robert－ son（1950）was adopted．This involved using three or more heavy atoms to search for the relative positions of the remainder in the cell，and then noting the centre of symmetry，and hence the absolute positions by inspection．Heavy atoms were assumed to lie at the Patterson origin and at two other outstandingly high peaks，and the Patterson function was superposed over the entire cell with these positions in turn as origin． The coincidence of vectors at once revealed the other five heavy atoms and the centre of symmetry，showing that the original two vectors had been correctly chosen． Moreover，by observing the peak heights carefully， Ca and P atoms were unambiguously separated．

It yet remained to discover the sixteen \mathbf{O} atoms． The number of recorded coincidences of medium height corresponding to possible oxygen positions was con－ fusingly large，and a further superposition with a fourth heavy atom failed to simplify the choice．The fact that the $\mathrm{P}-\mathrm{O}$ distance is approximately $1.6 \AA$ was therefore used．Spheres of this radius were con－ structed round the four P atoms，and all coincident vectors within about $0 \cdot 2 \AA$ of the spheres were noted． Pairs of these which were related by the previously－ found centre of symmetry were then picked out．Nine pairs were in fact found，of which one corresponded to an atom in a sterically impossible position near the centre，and the remaining eight gave convincing PO_{4} tetrahedra with no gross packing difficulties．All the vectors between the heavy atoms and the oxygens chosen were then calculated and compared with the

Fig. 1. Four unit cells of CaHPO_{4}, projected down the c axis.
original Patterson function to ensure not only that all the vectors were present, but that no significant peaks on the map remained unaccounted for. This was confirmed, and small alterations were then applied to the atomic positions to obtain the best possible overall fit.

Refinement

The atomic positions obtained were used to calculate structure factors for the (0 kl) zone. This gave encouraging agreement, the factor $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \div \Sigma\left|F_{o}\right|$ being $0 \cdot 40$. A Fourier projection, using the $77 F_{o}$ terms which could be signed, showed satisfactory details and only small shifts. When these were applied R fell to $0 \cdot 35$. Further refinement was carried out by the use of ($F_{o}-F_{c}$) syntheses, F_{o} being first scaled to fit F_{c} over five ranges of $\sin \theta$, since the Wilson scaling curve was not felt to be reliable. Four stages of refinement reduced R to $0 \cdot 203$. It was then decided to refine the x parameters using the ($h k 0$) zone. Structure factors calculated using the x parameters from the Patterson superposition and the already refined y parameters
gave $R=0.51$. Five stages of refinement exactly as for the previous zone reduced this to $R=0.196$. Finally the ($h 0 l$) zone was refined and the structure factors calculated for the three zones with the mean parameters from the three refinements. The residuals were then:

$$
\begin{gathered}
R(h k 0)=0 \cdot 193, R(h 0 l)=0.216, R(0 k l)=0 \cdot 193 ; \\
\text { average } R=0 \cdot 201 .
\end{gathered}
$$

These figures include reflexions of observed zero intensity, and no corrections have been applied for extinction nor for a temperature factor. As a final check of the validity of the structure, structure factors for the ($h k 3$) planes were calculated. Satisfactory agreement was obtained with $R=0 \cdot 285$. Observed and calculated F values for the planes ($h k 0$), ($h 0 l$), ($0 k l$) and ($h k 3$) are given in Table 1.
Fourier projections computed for the final structure showed the oxygen atoms badly distorted by the diffraction rings round the heavy atoms. This is to be expected when the Fourier series for atoms with no heat motion is abruptly terminated, and the effect
could be reduced by the introduction of a suitable temperature factor.
The final atomic parameters, in 360ths of the cell edges, are:

	x	y	z
Ca_{1}	106	157	98
Ca_{2}	63	302	240
P_{1}	74	135	259
P_{2}	107	339	75
O_{1}	114	120	336
O_{2}	123	177	222
O_{3}	48	66	213
O_{4}	15	192	270
O_{5}	120	300	6
O_{6}	165	39	108
O_{7}	39	27	57
O_{8}	105	285	126

The accuracy of the determination was estimated using the equations given by Cruickshank (1949). The standard deviation in electron density, $\sigma(\varrho)$, is $1 \cdot 1 \mathrm{e} . \AA^{-2}$ on the (0 kl) projection. The standard deviation in atomic coordinates in the c direction, $\sigma(z)$, is $0.006 \AA$ for $\mathrm{Ca}, 0.011 \AA$ for P and $0.039 \AA$ for 0 . Hence the standard deviations in bond lengths are:

$$
\begin{aligned}
\mathrm{Ca}-\mathrm{O} & =0.039 \AA \\
\mathrm{P}-\mathrm{O} & =0.040 \AA \\
\mathrm{O}-\mathrm{O} & =0.055 \AA \\
\mathrm{O}-\mathrm{O} & =0.078 \AA \text { (if related by a centre of symmetry) } .
\end{aligned}
$$

Description of the structure

The structure of $\mathrm{CaHPO} \mathrm{C}_{4}$ consists of discrete $\mathrm{PO}_{4}^{\prime \prime \prime}$ tetrahedra and Ca^{++}ions, the latter coordinated by a shell of oxygen atoms. Fig. 1 shows a projection of the structure down the c axis, four unit cells being shown. In the a direction Ca_{1} is bonded to O_{2} and O_{4} attached to P_{1}, while Ca_{2} is bonded to O_{6} and O_{7}, attached to P_{2}. In the b direction Ca_{1} is bonded to O_{6} and O_{7}, and Ca_{2} to O_{2} and O_{4}, so that a double chain of $\mathrm{Ca}-\mathrm{PO}_{4}-\mathrm{Ca}$ extends along the a axis, thus:

Bonds from Ca_{1} to O_{8} and Ca_{2} to O_{3} link these chains transversely in the b direction, forming a distorted sheet of atoms roughly in the (001) plane. The centre of symmetry produces a similar sheet below the first in the c direction, further bonds from Ca_{1} to O_{1}^{\prime} and O_{2}^{\prime}, and from Ca_{2} to $\mathrm{O}_{3}^{\prime}, \mathrm{O}_{5}^{\prime}$ and O_{8}^{\prime} linking the sheets. Ca_{1} thus has seven and Ca_{2} eight nearest oxygen neighbours in its coordination shell. This variation in the calcium coordination is not unexpected. The
highly electropositive nature of the metallic ion results in an unusually great ionic character in its coordination, so that no definite allocation of shared electrons from the oxygens is possible. $\mathrm{Ca}-\mathrm{O}$ coordinations of all values from 6 to 9 have been reported (see Wells, 1945) and different values in the same structure have been noted where the symmetry permits (Smith, 1953).

The bond lengths and angles obtained are given in Table 2.

The average $\mathrm{P}-\mathrm{O}$ bond length is $1.54 \AA$, the average $\mathrm{Ca}-\mathrm{O}$ bond length is $2.46 \AA$, and the average distance $\mathrm{O}-\mathrm{O}$ within the PO_{4} group is $2.51 \AA$.

The two hydrogen atoms probably lie between oxygens of neighbouring PO_{4} groups. It is not feasible to identify their positions by a reduction in the $\mathrm{O}-\mathrm{O}$ distance between non-bonded atoms, since in this case, with a standard deviation of $0.055 \AA$ in the bond length, only differences in $\mathrm{O}-\mathrm{O}$ bonds greater than $0 \cdot 18$ are significant. This uncertainty, caused primarily by the swamping effect of the heavy atoms, is sufficient

Table 2. Bond lengths and angles

$$
\begin{aligned}
& \mathrm{P}_{1}-\mathrm{O}_{1}=1.53 \AA \\
& \mathrm{P}_{1}-\mathrm{O}_{2}=1.58 \\
& \mathrm{P}_{1}-\mathrm{O}_{3}=1.49 \\
& \mathrm{P}_{1}-\mathrm{O}_{4}=1.56 \\
& \mathrm{P}_{2}-\mathrm{O}_{5}=1.52 \\
& \mathrm{P}_{2}-\mathrm{O}_{6}=1.56 \\
& \mathrm{P}_{2}-\mathrm{O}_{7}=1.55 \\
& \mathrm{P}_{2}-\mathrm{O}_{8}=1.54
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Ca}_{1}-\mathrm{O}_{1}^{\prime}=2.44 \AA \\
& \mathrm{Ca}_{1}-\mathrm{O}_{2}=2.34 \\
& \mathrm{Ca}_{1}-\mathrm{O}_{2}^{\prime}=2.48 \\
& \mathrm{Ca}_{1}-\mathrm{O}_{4}=2.29 \\
& \mathrm{Ca}_{1}-\mathrm{O}_{6}=2.44 \\
& \mathrm{Ca}_{1}-\mathrm{O}_{7}=2.69 \\
& \mathrm{Ca}_{1}-\mathrm{O}_{8}=2.37
\end{aligned}
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{2}=2.58 \AA
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{3}=2 \cdot 40
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{3}^{\prime}=2.43
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{4}=2 \cdot 44
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{5}^{\prime}=2 \cdot 44
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{6}=2 \cdot 51
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{7}=2.58
$$

$$
\mathrm{Ca}_{2}-\mathrm{O}_{8}^{\prime}=2 \cdot 51
$$

$$
\begin{aligned}
& \mathrm{O}_{1}-\mathrm{P}_{1}-\mathrm{O}_{2}=116.5^{\circ} \\
& \mathrm{O}_{1}-\mathrm{P}_{1}-\mathrm{O}_{3}=113.5 \\
& \mathrm{O}_{1}-\mathrm{P}_{1}-\mathrm{O}_{4}=105.5 \\
& \mathrm{O}_{2}-\mathrm{P}_{1}-\mathrm{O}_{3}=108.5 \\
& \mathrm{O}_{2}-\mathrm{P}_{1}-\mathrm{O}_{4}=103.5
\end{aligned}
$$

$$
\mathrm{O}_{5}-\mathrm{P}_{2}-\mathrm{O}_{6}=111 \cdot 0^{\circ}
$$

$$
\begin{aligned}
& \mathrm{O}_{5}-\mathrm{P}_{2}-\mathrm{O}_{7}=109 \cdot 0 \\
& \mathrm{O}-\mathrm{P}_{2}-\mathrm{O}_{2}=107 \cdot 0
\end{aligned}
$$

$$
\mathrm{O}_{5}-\mathrm{P}_{2}-\mathrm{O}_{8}=107 \cdot 0
$$

$$
\begin{aligned}
& \mathrm{O}_{6}-\mathrm{P}_{2}-\mathrm{O}_{7}=100 \cdot 0 \\
& \mathrm{O}_{6}-\mathrm{P}_{2}-\mathrm{O}_{8}=108 \cdot 5
\end{aligned}
$$

$$
\mathrm{O}_{7}-\mathrm{P}_{2}-\mathrm{O}_{8}=112 \cdot 0
$$

to obscure any evidence of hydrogen bonding. In fact, the shortest measured $0-0$ contact is $2.48 \AA$ between O_{7} and its symmetry-related atom, where the standard deviation is higher $\left[\sigma\left(d_{12}\right)=2 \sigma\left(x_{1}\right)\right]$ and where a hydrogen bond is not possible by space-group considerations. The next shortest contacts observed are

$$
\mathrm{O}_{1}-\mathrm{O}_{5}=2 \cdot 60, \mathrm{O}_{6}-\mathrm{O}_{8}^{\prime}=2 \cdot 62, \mathrm{O}_{4}-\mathrm{O}_{7}=2 \cdot 71 \AA
$$

The structure of CaHPO_{4} is thus a three-dimensional network of $\mathrm{PO}_{4}^{\prime \prime \prime}$ tetrahedra with Ca^{++}ions in the interstices, holding the anions together by highly ionic bonds with the oxygens. There seems to be no close resemblance to the structures of chemically related compounds, though CaSO_{4}, which is orthorhombic, has very similar cell dimensions (Dickson \& Binks, 1926). In particular, the structure of apatite (Beevers \& MacIntyre, 1946) is quite different, so that profound alterations in the crystal lattice must be necessary as the Ca/P ratio is reduced from $1 \cdot 66$, and a continuous series of solid solutions between hydroxyapatite and anhydrous dicalcium phosphate seems unlikely.

Our thanks are due to Dr B. Raistrick, of Scottish Agricultural Industries Ltd, for suggesting this problem, and to the Agricultural Research Council for a grant to purchase apparatus. One of us (G. M.) is indebted to the Department of Scientific and Industrial Research for a maintenance allowance during the period of this research.

References

Beevers, C. A. \& MacIntyre, D. (1946). Miner. Mag. 27, 254.
Beevers, C. A. \& Raystrick, B. (1954). Nature, Lond. 173, 542.

Beevers, C. A. \& Robertson, J. H. (1950). Acta Cryst. 3, 164.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Dickson, E. C. S. \& Binks, W. (1926). Phil. Mag. (7), 2, 114.
Groth, P. (1908). Chemische Krystallographie, vol. 2, p. 820. Leipzig: Engelmann.

Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Lehr, J. R., Smith, J. P. \& Brown, W.E. (1952). S. E. Regional Meeting, American Chemical Society, October 1952.
Smitн, J. V. (1953). Acta Cryst. 6, 9.
Wells, A. F. (1945). Structural Inorganic Chemistry. Oxford: Clarendon Press.

The Crystal Structure of Hydroxylamine

By Edward A. Meyers and William N. Lipscomb
School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A.

(Received 25 April 1955)
Four molecules of hydroxylamine are in an orthorhombic unit cell of symmetry $P 2_{1} 2_{1} 2_{1}$ and dimensions $a=7.29, b=4.39, c=4.88 \AA$. The coordinates $x_{0}=0.060, y_{0}=-0.062, z_{0}=$ $-0.023, x_{\mathrm{N}}=0.121, y_{\mathrm{N}}=0.244$ and $z_{\mathrm{N}}=0.063$ lead to the $\mathrm{N}-\mathrm{O}$ bond distance of $1.47_{6} \pm 0.03 \AA$, and to the closest intermolecular contacts of $\mathrm{N} \cdots \mathrm{O}=2 \cdot 74,3.07,3 \cdot 11$ and $3.18 \AA$. Hydrogen bonds are presumed to lie in the 2.74 and $3.07 \AA$ contacts, thus leaving the third hydrogen atom of the molecule uninvolved, and indicating a trans configuration for the molecule. No residual entropy is indicated, and no transition occurs when the solid is cooled to $-185^{\circ} \mathrm{C}$.

Introduction

Two spectroscopic investigations of hydroxylamine, one of the solid and gas by Giguère \& Liu (1952), and one of the solid at low temperature by Nightingale \& Wagner (1954), have recently been made. These studies differ somewhat in the observations, and the assignments of the bands are different. In particular, Nightingale \& Wagner assigned the broad, intense band at $2867 \mathrm{~cm} .^{-1}$ to a strong hydrogen bond.

In the hope that we could provide some information relating to these spectroscopic studies, and in the expectation that the structure might be closely related to those shown by hydrazine (Collin \& Lipscomb, 1950, 1951), hydrogen peroxide (Abrahams, Collin \& Lipscomb, 1951), methanol (Tauer \& Lipscomb, 1952), and methylamine (Atoji \& Lipscomb, 1953), we have carried out a study of the crystal structure as described below. Low-temperature techniques were employed partly because of the low melting point of $33^{\circ} \mathrm{C}$., but chiefly because of the tendency towards rapid decomposition near room temperature.

Experimental

Hydroxylamine, prepared by the method of Hurd (1939), was transferred to a vacuum line and was
partially further purified by pumping out volatile impurities for periods up to 30 min . The usual techniques of sublimation into capillaries produced impure samples, so that a modified technique was used. A section of glass tubing between the sample and vacuum pumps was drawn down to capillary diameter. With the pumps maintained in operation, a short length of this constricted region was cooled to near liquidnitrogen temperature, allowed to warm for a short time, cooled again, with the low-temperature stream of nitrogen, and then sealed on both sides of the small slug of solid hydroxylamine. Thus prepared, the samples were stored in dry ice.

X-ray diffraction data were collected on the precession camera from a single crystal, grown with the use of a warm air stream, and maintained at $-60^{\circ} \mathrm{C}$. during photography. Mo $K \alpha$ radiation was used, and precession angles of 21° for the $\{h 0 l\}$ zone and 30° for the $\{h k 0\},\{0 k l\},\{h k h\}$ and $\{2 h, k, h\}$ zones were employed. No X-ray diffraction evidence of a phase transition was observable at temperatures down to $-185^{\circ} \mathrm{C}$.

Intensities were estimated visually with the use of a standard scale of timed exposures of a reflection from a crystal of NaCl of comparable size. The usual Lorentz and polarization corrections (Waser, 1951)

